AP Precalc Review: Unit 1

Functions

\rightarrow Function: relationship between input and output
\rightarrow Input is domain, output is range
\rightarrow Input values can only have one possible output value, but output values can have multiple input values (vertical line test)

Increasing and decreasing functions

\rightarrow Increasing: output values increase as input values increase
$\rightarrow \quad$ Decreasing: output values decrease as input values increase
\rightarrow Concave up: curves upward; rate of change/slope of tangent is increasing
\rightarrow Concave down: curves downward; rate of change/slope of tangent is decreasing
\rightarrow Points of inflection: changes in concavity
\rightarrow Steeper slope doesn't necessarily mean increasing
\rightarrow Zeroes: where graph intersects x -axis (roots, solutions, x -intercepts)

The depth of water, in feet, at a certain place in a lake is modeled by a function W . The graph of $y=W(t)$ is shown for $0 \leq$ $\mathrm{t} \leq 30$, where t is the number of days since the first day of a month. What are all intervals of t on which the depth of water is increasing at a decreasing rate?
(A) $(3,6)$ only
(B) $(3,12)$
(C) $(0,3)$ and $(18,30)$ only
(D) $(0,6)$ and $(18,30)$

Change

\rightarrow Average rate of change: change over an interval
$\rightarrow \frac{y 2-y 1}{x 2-x 1}$
\rightarrow Linear function: constant rate of change
\rightarrow Rate of change of a quadratic has a constant rate of change (second difference)

POLYNOMIALS

\rightarrow Local/relative minima and maxima: points where function changes from increasing to decreasing or decreasing to increasing
\rightarrow Global/absolute: highest or lowest points on the graph
\rightarrow In polynomials with only real coefficients, every complex zero occurs in a conjugate pair
\rightarrow Polynomial long division: polynomial divided by root $=0$

The figure shown is the graph of a polynomial function g. Which of the following could be an expression for $g(x)$?
(A) $0.25(x-5)(x-1)(x+8)$
(B) $0.25(x+5)(x+1)(x-8)$
(C) $0.25(x-5)^{2}(x-1)(x+8)$
(D) $0.25(x+5)^{2}(x+1)(x-8)$

Even and odd functions

\rightarrow Even functions: symmetric across $y-a x i s, f(x)=f(-x)$
\rightarrow Odd functions: symmetric at 180 degree rotation about the origin, $-\mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x})$

The polynomial function $p(x)$ is an odd function. If $p(3)=-4$ is a relative maximum of $p(x)$, which of the following statements about $p(-3)$ must be true?
(A) $p(-3)=4$ is a relative maximum.
(B) $p(-3)=-4$ is a relative maximum.
(C) $p(-3)=4$ is a relative minimum.
(D) $p(-3)=-4$ is a relative minimum.

The polynomial function p is given by $p(x)=-4 x^{5}+3 x^{2}+1$. Which of the following statements about the end behavior of p is true?
(A) The sign of the leading term of p is positive, and the degree of the leading term of p is even; therefore, $\lim _{x \rightarrow-\infty} p(x)=\infty$ and $\lim _{x \rightarrow \infty} p(x)=\infty$.
(B) The sign of the leading term of p is negative, and the degree of the leading term of p is odd; therefore, $\lim _{x \rightarrow-\infty} p(x)=\infty$ and $\lim _{x \rightarrow \infty} p(x)=-\infty$.
(C) The sign of the leading term of p is positive, and the degree of the leading term of p is odd; therefore, $\lim _{x \rightarrow-\infty} p(x)=-\infty$ and $\lim _{x \rightarrow \infty} p(x)=\infty$.
(D) The sign of the leading term of p is negative, and the degree of the leading term of p is odd; therefore, $\lim _{x \rightarrow-\infty} p(x)=-\infty$ and $\lim _{x \rightarrow \infty} p(x)=\infty$.

Rational functions

\rightarrow End behavior:
\rightarrow Leading terms have degree $=$ horizontal asymptote
\rightarrow Denominator $>$ numerator $=\mathrm{y}=0$ horizontal asymptote
\rightarrow Numerator $>$ denominator $=$ same end behavior as $y=\frac{a}{b} x^{n-d}$
\rightarrow Slant asymptote with polynomial long division is $\mathrm{n}>\mathrm{d}$ by 1
\rightarrow Holes: factors that cancel out, plug into simplified form to find y -coordinate
\rightarrow Vertical asymptote: set denominator equal to 0
\rightarrow Roots: set numerator equal to 0
Find asymptotes, holes, and roots of $\frac{x^{3}+4 x^{2}-12 x}{x^{2}+7 x+6}$

Which of the following functions has a zero at $x=3$ and has a graph in the $x y$-plane with a vertical asymptote at $x=2$ and a hole at $x=1$?
(A) $h(x)=\frac{x^{2}-4 x+3}{x^{2}-3 x+2}$
(B) $j(x)=\frac{x^{2}-5 x+6}{x^{2}-3 x+2}$
(C) $k(x)=\frac{x-3}{x^{2}-3 x+2}$
(D) $m(x)=\frac{x-3}{x^{2}-4 x+3}$

Binomial Theorem

Exponent	Pascal's Triangle	Binomial Expansion
0	1	$(a+b)^{\circ}=1$
1	11	$(a+b)^{1}=1 a+1 b$
2	121	$(a+b)^{2}=1 a^{2}+2 a b+1 b^{2}$
${ }^{3}$	1331	$(a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$
5	14641	$(a+b)^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4}$
6	15101051	$(a+b)^{5}=1 a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+1 b^{5}$
$(a+b)^{n}$	$a^{n} b^{0}+\binom{n}{1}$	$\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n} a^{0} b^{n}$

Transformations: $g(x)=a f(b(x-h))+k$

\rightarrow a: vertical dilation by factor of $|\mathrm{a}|$, reflection over x axis if negative
$\rightarrow \mathrm{b}$: horizontal dilation by factor of $\left|\frac{1}{b}\right|$, reflection over y axis if negative
$\rightarrow \mathrm{k}$: vertical translation of k units
$\rightarrow \mathrm{h}$: horizontal translation of -h units
\rightarrow
\rightarrow If VA at $x=-2$, and HA at $y=3$ for $f(x)$, find new asymptotes of

$$
g(x)=2 f(x+1)-3
$$

x	-8	-4	-2	-1	0	3
$f(x)$	87	55	5	-4	-7	20

The table gives values for a polynomial function f at selected values of x. Let $g(x)=a f(b x)+c$, where a, b, and c are positive constants. In the $x y$-plane, the graph of g is constructed by applying three transformations to the graph of f in this order: a horizontal dilation by a factor of 2 , a vertical dilation by a factor of 3 , and a vertical translation by 5 units. What is the value of $g(-4)$?
(A) 266
(B) 170
(C) 28
(D) 20

The function g is given by $g(x)=x^{3}-3 x^{2}-18 x$, and the function h is given by $h(x)=x^{2}-2 x-35$. Let k be the function given by $k(x)=\frac{h(x)}{g(x)}$. What is
the domain of k ? the domain of k ?
(A) all real numbers x where $x \neq 0$
(B) all real numbers x where $x \neq-5, x \neq 7$
(C) all real numbers x where $x \neq-3, x \neq 0, x \neq 6$
(D) all real numbers x where $x \neq-5, x \neq-3, x \neq 0, x \neq 6, x \neq 7$

