AP Precalc Review: Unit 1

Functions

- \rightarrow Function: relationship between input and output
- \rightarrow Input is <u>domain</u>, output is <u>range</u>
- $\rightarrow\,$ Input values can only have one possible output value, but output values can have multiple input values (vertical line test)

- \rightarrow Concave down: curves downward; rate of change/slope of tangent is decreasing
- \rightarrow Points of inflection: changes in concavity
- \rightarrow Steeper slope doesn't necessarily mean increasing
- $\rightarrow~$ Zeroes: where graph intersects x-axis (roots, solutions, x-intercepts)

The depth of water, in feet, at a certain place in a lake is modeled by a function W. The graph of y = W(t) is shown for $0 \le t \le 30$, where t is the number of days since the first day of a month. What are all intervals of t on which the depth of water is increasing at a decreasing rate?

(A) (3, 6) only
(B) (3,12)
(C) (0, 3) and (18, 30) only
(D) (0, 6) and (18, 30)

Change

- \rightarrow Average rate of change: change over an interval
- $\rightarrow \frac{y_2-y_1}{x_2-x_1}$
- \rightarrow Linear function: constant rate of change
- \rightarrow Rate of change of a quadratic has a constant rate of change (second difference)

POLYNOMIALS

- $\rightarrow\,$ Local/relative minima and maxima: points where function changes from increasing to decreasing or decreasing to increasing
- \rightarrow Global/absolute: highest or lowest points on the graph
- $\rightarrow~$ In polynomials with only real coefficients, every complex zero occurs in a conjugate pair
- \rightarrow Polynomial long division: polynomial divided by root = 0

The figure shown is the graph of a polynomial function g. Which of the following could be an expression for g(x)?

- (A) 0.25(x-5)(x-1)(x+8)(B) 0.25(x+5)(x+1)(x-8)
- (C) $0.25(x-5)^2(x-1)(x+8)$
- (D) $0.25(x+5)^2(x+1)(x-8)$

Even and odd functions

 \rightarrow Even functions: symmetric across y-axis, f(x) = f(-x)

 \rightarrow Odd functions: symmetric at 180 degree rotation about the origin, <code>-f(x) = f(-x)</code>

The polynomial function p(x) is an odd function. If p(3)=-4 is a relative maximum of p(x), which of the following statements about p(-3) must be true?

(B) p(-3)=-4 is a relative maximum.

(C) p(-3)=4 is a relative minimum.

(D) p(-3)=-4 is a relative minimum.

The polynomial function *p* is given by $p(x) = -4x^5 + 3x^2 + 1$. Which of the following statements about the end behavior of *p* is true?

- (A) The sign of the leading term of *p* is positive, and the degree of the leading term of *p* is even; therefore, $\lim_{x \to \infty} p(x) = \infty$ and $\lim_{x \to \infty} p(x) = \infty$.
- (B) The sign of the leading term of *p* is negative, and the degree of the leading term of *p* is odd; therefore, $\lim_{x \to \infty} p(x) = \infty$ and $\lim_{x \to \infty} p(x) = -\infty$.
- (C) The sign of the leading term of *p* is positive, and the degree of the leading term of *p* is odd; therefore, $\lim_{x \to \infty} p(x) = -\infty$ and $\lim_{x \to \infty} p(x) = \infty$.
- (D) The sign of the leading term of *p* is negative, and the degree of the leading term of *p* is odd; therefore, $\lim_{x \to \infty} p(x) = -\infty$ and $\lim_{x \to \infty} p(x) = \infty$.

Rational functions

- \rightarrow End behavior:
 - \rightarrow Leading terms have degree = horizontal asymptote
 - \rightarrow Denominator > numerator = y=0 horizontal asymptote
 - \rightarrow Numerator > denominator = same end behavior as $y = \frac{a}{b}x^{n-d}$
 - \rightarrow Slant asymptote with polynomial long division is n>d by 1
- \rightarrow Holes: factors that cancel out, plug into simplified form to find y-coordinate
- \rightarrow Vertical asymptote: set denominator equal to 0
- \rightarrow Roots: set numerator equal to 0

Find asymptotes, holes, and roots of $\frac{x^3+4x^2-12x}{x^2+7x+6}$

Which of the following functions has a zero at x = 3 and has a graph in the *xy*-plane with a vertical asymptote at x = 2 and a hole at x = 1?

(A)
$$h(x) = \frac{x^2 - 4x + 3}{x^2 - 3x + 2}$$

(B) $j(x) = \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$
(C) $k(x) = \frac{x - 3}{x^2 - 3x + 2}$
(D) $m(x) = \frac{x - 3}{x^2 - 4x + 3}$

Binomial Theorem

Exponent	Pascal's Triangle	Binomial Expansion		
0	1	$(a+b)^0 = 1$		
1	1 1	$\left(a+b\right)^1 = 1a+1b$		
2	1 2 1	$(a+b)^2 = 1a^2 + 2ab + 1b^2$		
3		$(1)^3$ $(1)^3$ $(1)^2$ $(1)^2$ $(1)^3$		
4	1 3 3 1	$(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$		
5	1 4 6 4 1	$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$		
6	1 5 10 10 5 1	$(a+b)^5 = 1a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + 1b^5$		

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n}a^{0}b^{n}$$

Transformations: g(x) = af(b(x - h)) + k

- $\rightarrow~$ a: vertical dilation by factor of $|\,a\,|\,,$ reflection over x axis if negative
- \rightarrow b: horizontal dilation by factor of $\left|\frac{1}{b}\right|$, reflection over y axis if negative
- \rightarrow k: vertical translation of k units
- \rightarrow h: horizontal translation of -h units
- \rightarrow

 \rightarrow If VA at x = -2, and HA at y = 3 for f(x), find new asymptotes of

$$g(x) = 2f(x+1) - 3$$

x	-8	-4	-2	-1	0	3
f(x)	87	55	5	-4	-7	20

The table gives values for a polynomial function f at selected values of x. Let g(x) = af(bx) + c, where a, b, and c are positive constants. In the xy-plane, the graph of g is constructed by applying three transformations to the graph of f in this order: a horizontal dilation by a factor of 2, a vertical dilation by a factor of 3, and a vertical translation by 5 units. What is the value of g(-4)?

- (A) 266
- (B) 170
- (C) 28
- (D) 20

The function g is given by $g(x) = x^3 - 3x^2 - 18x$, and the function h is given by $h(x) = x^2 - 2x - 35$. Let k be the function given by $k(x) = \frac{h(x)}{g(x)}$. What is the domain of k?

- (A) all real numbers x where $x \neq 0$
- (B) all real numbers x where $x \neq -5$, $x \neq 7$
- (C) all real numbers x where $x \neq -3$, $x \neq 0$, $x \neq 6$
- (D) all real numbers x where $x \neq -5$, $x \neq -3$, $x \neq 0$, $x \neq 6$, $x \neq 7$